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Abstract—In recent years, Unmanned Aerial Vehicle (UAV) has
been used extensively in various applications from entertainment,
virtual tourism to construction, mining, agriculture. Navigation,
path planning, and image acquisition are the main tasks in
administering these aerial devices in accordance with real-time
object tracking for affordable aerial vehicles. Aircraft crash is one
of the most critical issues due to the uncontrolled environment
and signal loss that cause the aerial vehicle to hit the buildings
on its returning mode. Furthermore, real-time image processing,
such as object tracking, has not yet been exploited for a low-cost
aerial vehicle. This paper proposes a prototype embedded in a
Web-based application called DroneVR to mitigate the aforemen-
tioned issues. The virtual reality environment was reconstructed
based on the real-world fly data (OpenStreetMap) in which path
planning and navigation were carried out. Gaussian Mixture
Model was used to extract foreground and detect a moving object,
Kalman Filter method was then applied to predict and keep track
of object’s motion. Perceived ease of use was investigated with a
small sample size users to improve the simulator.

Index Terms—UAV, Virtual reality, Drone crash, 3D simulator,
Openstreetmap, Path planning

I. INTRODUCTION

According to the market research [12], Drone or (Unmanned
Aerial Vehicle - UAV) sales have been increased significantly
recently due to its lowering cost and mobility. As of 2018,
there were more than 110,000 drones registered with Federal
Aviation Administration (FAA) hovering on the sky, this
number is more than double (2.5 times) compared to 2016
and is expected to exceed 600,000 by 2022. It is obvious that
the use of drones has been utilized in many fields such as in
construction, mining, agriculture, surveying, real estate.

Losing signal [10] or disconnected video transmission is
one of the primary reasons causing drones to crash or lost. A
modern light-weight drone is often equipped with a “Return
Home“ [18] function that allows the unmanned device to come
back to its took-off point (considered as home) whenever its
signal is lost. First, the drone flies up to a certain altitude -
which is set by the operator; then it simply traces a straight
line to its home without considering obstacle avoidance. This
approach works well in an open area where no building or
obstacle blocks the returning home way. On the other hand,
the “Return Home” mode is more vulnerable to crash in a city.
Drone operators need to clearly understand the environment
- which is not always feasible as crashes did occur due

to buildings hit [19]. Literature has made some efforts to
alleviate this issue, for example, the DJI manufacturer (the
most dominant manufacturers on the drone markets), provides
a flight simulator [11] allowing drone operators to practice
and get used to drone controller before the actual use. The
limitation of this approach is that it does not reflect the real-
world scenarios.

Object detection/tracking is another interesting topic which
has been investigated in many fields, dedicated UAVs are
equipped with sensors that are able to detect and track object,
however, they are more expensive compared to regular ones. In
the case of extreme conditions (e.g., crash, get lost, hijack), the
accumulated cost could be high. There is a need to have cheap
and affordable drones that are capable of doing same tasks
and relies only on its camera only. Yet, one popular approach
is to capture media stream from the UAV’s camera then
use machine learning method for object detection/tracking.
However, this method requires objects to be trained before
they can actually be used. TensorFlow [1] and OpenCV [5]
are two great examples in this case and they have been used
extensively for detect popular object such as people, bicycles,
cars, trucks, animals, etc. Currently, TensorFlow is able to
detect around 100 classes of objects via MobileNet feature
extractor and OpenCV provides 80 classes through YOLO
with a high prediction accuracy. However, when a desired
object is not trained, it is a challenging task to leverage their
strength. In addition, training object for model ready is another
time consuming issue, transfer learning could be an alternative
for using an existing pre-trained model but for a particular
domain one may be interested in a few objects, thus taking
into account of all classes in existing models is not preferable
and computational expense.

This paper proposes an approach to address the aforemen-
tioned issue by constructing a virtual reality simulator that
allows operators to get practice with drone in a mimic real-
world environment before their devices actually being used.
The scope of this work is to target cheap and affordable
drone without modern sensors. The main contributions of this
research thus are:

• It provides an approach to mitigate the risk of drone
crashing with buildings by incorporating real-world map
data into the VR system so that operators can practice



and get themselves familiarize with the environment;
• It gives a light-weight approach for object detection and

tracking, taking into account of occlusion;
• It illustrates its approaches through an open-source virtual

reality simulator called DroneVR; and
• It evaluates the DroneVR in terms of ease of use.

The rest of the paper is organized as follows: Sect. II
summarizes similar work. We present our system design and
simulation in Sect. III. A user study on the VR application
is presented in Sect. IV. We conclude our paper with future
work in Sect. V.

II. RELATED WORK

In response to the need for controlling multiple UAVs with
minimum personnel resources, Knutzon [17] created a virtual
reality application that is capable of dynamic real-time path/re-
path planning. In this early day, the shortage of available
modern VR headset and controllers limits this application to
be immersed only through stereoscopic binoculars, interaction
with VR environment is thus restricted to 2D game-pad
interface, the user was capable to selecting only pre-defined
paths without the ability to manipulate them. The question of
whether 3D immersive interface could provide any advantage
over the traditional 2D interface still remains as indicated in
their future work.

Crescenzio et al. [6] also designed a touch-screen based
interface for UAV ground control station. High-level com-
mands to the vehicle were sent from the touch screen and UAV
operated in the 3D virtual environment. One interesting feature
of this designed application is the overlay of 2D map in the
background that makes the scene look realistic, incorporating
3D models is suggested to enhance the level of fidelity. This
work concentrates on path planning for a generic vehicle
model. The study result showed that 3D virtual environment
conveyed the most important features such as the perception of
the UAV’s current state and the scenario at a glance. For target-
ing small drones (i.e., Bitcraze Crazyflie 2.0), Honig et al. [16]
provided a testbed on how to link a small drone to a virtual
environment instead of bigger and more expensive ones. Their
work, however, mostly focused on testing algorithms rather
than creating a user interface for drones. Paterson et al. [23]
proposed an interesting work about setting up a path planning
in a virtual reality environment by using Unity3D software in
accordance with Oculus Rift headset. The idea was to translate
or map user-defined paths from high-level (3dimension) to
lower-level control (i.e., roll, pitch, yaw, and thrust). Their
study result indicated a statistically significant improvement
in safety and subjective usability over manual control. The
above attempts are great examples of taking advantages of
the virtual environment to understand, learn, and control the
UAVs. However, incorporating real-world data has not been
fully explored or investigated. This paper takes a further step
by addressing the mentioned needs.

III. SYSTEM DESIGN

A. The DroneVR approach

DroneVR is developed using JavaScript libraries and in
particular the ThreeJS [7]. Unlike other mentioned approaches
that simulated VR environment in non-popular headset devices
(i.e., Oculus Rift), our effort tried to bring VR experience
to a more general audience with just a browser-supported
device. Hence, our approach does not restrict users from
depended on a single operating system. The use of web-
based virtual reality has been studied extensively in [20], [22],
[28]. In addition, the open-source platform would allow drone
enthusiasts to make a similar experiment with any type of
their drone. Real-time data (i.e., buildings locations and their
heights) was retrieved from OpenStreetMap [14]. 3D models
for our application were freely achieved from TurboSquid as
suggested by Nguyen and Dang [21]. The primary goal of
DroneVR is to create a VR application that presents drone
operators a high-level view of the path planning/re-planning
process. The DroneVR designing approach takes into account
of the following considerations: (1) automated routing from a
drone to a set of mission points, (2) semi-automated routing
with the human in the loop 3) drone passively returning with
object avoidance. To meet these goals, this paper proposes
several features that are implemented in DroneVR based on the
application design approach suggested by Shneiderman [25]
for a visual application:

– Overview Display (F1). Display overview of the 3D
virtual environment.

– Details on demand (F2). Present details of the planning
paths construction with the perception of drone present
in the scene.

– Automated routing (F3). Automatically find the optimal
paths among a set of mission points.

– Semi-automated routing (F4): Re-routing optimal paths
when operators gain control over the drone

– Safety returning home (F5). Returning to the starting
point (or pre-defined point) with object avoidance.

– Object detection and tracking (F6): Tracking a moving
object on a region of interest.

B. The DroneVR components

Based on the outlined features, DroneVR is designed with
two main components: 1) The main component and 2) the
navigation component.

1) The main component: This component represents the
virtual reality environment in which 3d objects (buildings,
drone, tank, and points of interest) are rendered (Feature
F1). Since the proposed VR was implemented in the web
environment, the computational expense should be taking into
consideration. To improve performance, we used low poly
3D models with a minimum number of vertices and avoided
using images as a texture, instead, we used normal color
for filling the faces (i.e., drones, objects). For buildings, we
do not render the faces (only vertices in wire-frame mode)
to reduce occlusion and vision cluttering. OpenStreetMap



Fig. 1. DroneVR overview panel for a university campus map.

Fig. 2. The DroneVR architecture

provides data for each building in terms of points (or nodes)
which hold information such as longitude, latitude, and height,
this building data is mapped into a 3D virtual environment
using Web Mercator Projection [3]. The formulas for the Web
Mercator can be expressed as:
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where λ, ϕ are the longitude and latitude in radians respec-
tively. Initially, users can configure the desired location of the
3D environment via Global Configuration panel (as depicted
in Fig. 3). Center of the map was aligned with the center of
3d space.

2) The navigation component: This component contains
five widgets: 1) a real-time thumbnail map, 2) two navigation

Fig. 3. Global configuration of the DroneVR

controllers, 3) a mission points for routing, 4) a current drone
altitude measurement and 5) a return home function.

The real-time thumbnail map: is displayed at the top right
corner of the DroneVR as depicted in Fig. 1 that gives users a



high-level view of drone presence in the scene. It also enables
users to set up the planning paths (Feature F2) or create
points of interest by clicking on the map. Once, these POIs
are generated, optimal path planning can be carried out by the
“Routing” button shown in Fig. 5(c).

The path planning algorithm (Feature F3) was implemented
involving two steps: First, it measures the shortest distance
between the current drone position to all other POIs based on
the notable A* (namely A star) search algorithm [15] which
has been adapted in many current game engines for navigation
(e.g., Unity3D). In this algorithm, we constructed a 3D grid
system that spans the whole map, and the grid was divided
into segments (width segment = 30, height segment = 16 and
depth segment = 3 as shown in Fig. 3). The unreachable point
on the grid is set if this point is inside/close to a building as
depicted in Fig. 4 where the red dots are reachable and yellow
dots are not reachable. These segment parameters are set due
to the current map selection. If users prefer an area with more
buildings, the resolution of the grid should be higher or vice
versa.

Fig. 4. Example 3D grid system of the DroneVR: red points are reachable
whereas yellow points are unreachable

Based on the calculated distances, the second step involved
optimal path planning with the traveling salesman problem
(TSP) [4] algorithm. The ordered way-points was then visu-
alized in the the mission points indicator widget located at
the top middle screen. The main drawback of the thumbnail
map is that it only gives the presence of a drone and POIs
(longitude and latitude) in a 2-dimension space, and discards
the third dimension (altitude). Instead, the current drone
altitude measurement was created to keep track of the drone
altitude at any given time as in Fig. 5(f).

There is a case when users want to manually control
(Feature F4) the UAV to some points of interests from the
start as usual operations or to navigate the drone to another
point which is not set from the beginning. In this case, the two
navigation controllers - as in Fig. 5 (d) and (e) - are provided
that allow the operator to: move left, move right, move up,
move down, move forward, move backward, rotate up, rotate
down, turn left, and turn right. This option is triggered upon
the manual mode (center of nav controllers) is pressed.

In case of losing signal or the operator want to take the
drone back, the ‘Return Home’ function allows the UAV
coming back to its starting point (Feature F5) which was

set up in the Global Configuration panel as shown in Fig. 3.
This option is represented in Fig. 5 (c). In this approach,
the starting position will be used as a point of interest. The
optimal path planing will be performed on a single point
(from the current drone position to home point). By taking the
knowledge of the environment, the chance of crashing will be
reduced significantly.

Fig. 5. The navigation control of the DroneVR: a) open global configuration,
b) automated-path planning, c) ‘Return Home’ mode, d) movement controller,
e) rotation controller, f) altitude measurement

Fig. 6. Feature extractions and object detection: a) image captured in one
frame, b) foreground extraction, c) blob analysis, d) detected object

3) Object tracking:
4) Foreground extraction: ThreeJS renders the 3D en-

vironment in a regular time interval (approximately 60
frames/images per second) for almost modern browsers. The
image in each frame is color-encoded in RGB format (i.e.,
R-red, G-green, B-blue). To reduce computational time, the
image was converted into a Gray-sale image with luma
(brightness) color space which has been shown more relevant
compared to other methods (i.e., hue, chroma) [13] for image



compression and processing. The conversion is expressed as
follow:

luma = 0.2989 ∗R+ 0.5870 ∗B + 0.1140 ∗G (2)

The value of luma color space ranges from 0 (black) to 1
(white). Once, the grayscale image was achieved, we used
the Gaussian Mixture Model [27] to extract the foreground
mask. The basic intuition behind using this model is that
within a certain time interval, the brightness(luma value) of
each image pixel does not change so much and often fall into
its Gaussian distribution and this pixel value is considered as
background pixel. The probability of the observing pixel at
time t is described as:

P (Xt) =

K∑
n=1

ωi,t ∗ η(Xt, µi,t,Σi,t) (3)

Where K is the number of Gaussian distributions (K = 5
in our VR application), ωi,t is the weight of the pixel in the
Gaussian ith at time t, µi,t is the average value of the ith

Gaussian at time t, Σi,t is the co-variance matrix of the ith

Gaussian at time t and η is the probability density function
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At each time step t, the weight ωi,t, mean µi,t and the
standard deviation for each Gaussian are updated accordingly.
Since our 3D environment is not subjected to change (e.g,
lighting, having debris which cause noise), the foreground
feature can quickly be extracted with a low number of time
steps (t = 5). In practice, one may consider to increase this
number.

The foreground feature was represented by the foreground
mask which contains logical values of 0 and 1 where 0
represents the background and 1 represents the foreground.
Fig. 6(a) shows a single image captured at time t and Fig. 6(b)
illustrates the foreground mask extracted at time t = 5.

5) Blob Analysis: The foreground mask extracted from the
previous step was used for blob (binary large object) analysis.
Our first approach was to use 4-connected component [9]
method to detect a unique object - that is neighbouring pixels
with the same color in four directions will form an object.
However, this approach was not stable when we view the target
object from different angles. Fig. 6(a) shows that the white
pixels are clustered but not tightly connected. Filing holes [26]
method thus can not be applied in this case due to no closed
connected component. An alternative approach was employed
based on the center of tendency in which a pixel belongs to an
object if its distance to the object’s center is less than a certain
threshold (i.e., greater than 25). Fig. 6(c) depicted the extracted
object (Feature F6) from a collections of disconnected pixels,
the white rectangle is the bounding box constructed from the
most left, right, top, bottom pixel positions. The bounding box
is then applied back to the original image as shown in Fig. 6(d)

6) Kalman Filter: The detected object was tracked
(Feature F6) in each frame/image based on the relative
distance between the current object’s position and its previous
position, if the distance is relatively small or less than a thresh-
old, the current and previous detected object are considered as
the same object and is registered to a track. Here, we assume
that the tank moves with a constant speed. In the blob analysis,
our method to extract the blob was based on the center mean
of tendency. The main drawback of this approach was that the
center of the detected object may not be the same as the center
of the real object because the detected object’s mean was
calculated based on the position of pixels. To overcome this
issue, we applied the Kalman Filter algorithm [29] to estimate
the correct position of the detected object. This algorithm uses
detected, true and its predicted locations of the tracked objects
as inputs then it estimates and justifies the predicted object
position as close to its true value as possible. Another useful
outcome that can be achieved from this algorithm was that
future object position can be predicted with the absence of
the true object in which the Kalman Filter considered the true
object was the same as the predicted one.

IV. USER STUDY

To evaluate the proposed VR application, we conducted a
user study with 12 participants with respect to the ease of use
- one component of the Technology Acceptance Model (TAM)
[8]. TAM has proven to be a useful theoretical framework in
explaining certain aspects of information technologies as well
as understanding user behavior toward using these technolo-
gies. As a preliminary user study, we aimed to (1) investigate
whether the user could learn and operate the simulated drone
with ease, (2) access how easy for the operators to use our
simulator and (3) obtain feedback from users experience to
improve the usability of DroneVR. Before using the simulator,
all participants were introduced the basic functionality of
the tool either by direct communication or by watching the
recorded video (made it available on YouTube [2]). Seven
users come from the same departments with the authors, and
five users are volunteers from the internet. Google form was
used to collect the user’s feedback. Time taken for doing the
test is not limited since the application runs on the browser.
Users can experiment and provide feedback at any time, but
it was expected to get the feedback within a week.

Results: Overall, all users provided their feedback after
doing their experiment. Besides the positive point of views,
there were some issues with DroneVR such as: (1) the envi-
ronment should be more realistic that includes building and
road information instead of points and lines, (2) users should
be able to modify the environment color, (3) the road is not
clearly visible.

Discussion: As a preliminary user study to bring real-world
data into virtual reality, there are some technical challenges in
our proposed VR application. To increase the performance and
smooth transition in the web-browser, we tried to minimize
rendering cost and computations in each frame, so this was
a trade-off between high fidelity and performance. In this



work, users are only able to get a sense of the surrounding
environment. To improve the fidelity, one approach is to use
Mapbox GL to reconstruct the environment. However, the
current version of Mapbox GL only supports pitching (tilting)
of the map between 0 and 60 degrees from the plane of the
screen. To be able to stand on the ground, around 90 degrees
of pitching should be reached. Going in this direction, we were
able to customize the Mapbox GL core and tilted the map to
90 degrees as depicted in Fig. 7. This new approach will be
further examined in future work.

Fig. 7. Pitching 85 degrees of the 3D environment in Mapbox GL

V. CONCLUSION AND FUTURE WORK

This paper presented a drone simulator in a 3D environment
that helps operators control and manipulate the drone before
it is actually being used. Real-world map data was retrieved
from OpenStreetMap. Path planning algorithm was adapted
for optimal routing in 3D settings. Perceived on easy-of-
use was evaluated to improve the simulator. This work-in-
progress paper posed several limitations; (1) the sample size
in user study is small, (2) the fidelity of the application
is needed to be improved, and (3) no quantitative method
was used to get insights of the user study. To overcome the
limitations, a comprehensive user study will be conducted with
adequate sample size using the extended technology accep-
tance model with task technology, perceived visual design,
perceived usefulness, perceived ease of use, self-efficacy, and
intention to use. Sensors on smartphone device can be utilized
[24] to measure user’s physical response after experiencing
the application. Furthermore, the fidelity of DroneVR will be
investigated by integrating the architecture into Mapbox GL
in the future work.
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