
EasyChair Preprint
№ 11276

EnPAC: Petri Net Model Checking for Linear
Temporal Logic

Zhijun Ding, Cong He and Shuo Li

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 10, 2023

EnPAC: Petri Net Model Checking for Linear
Temporal Logic

Zhijun Ding
Department of Computer Science

and Technology
Tongji University
Shanghai, China

dingzj@tongji.edu.cn

Cong He
Department of Computer Science

and Technology
Tongji University
Shanghai, China

1105585684@qq.com

Shuo Li*
Department of Computer Science

and Technology
Tongji University
Shanghai, China

lishuo20062005@126.com

Abstract—In linear temporal logic (LTL) model checking using
Petri nets, two important aspects are state generation and explo-
ration for counterexample search. Traditional state generation
involves updating a structure of enabled transitions and fre-
quently encoding/decoding to read each encoded state, which can
be expensive. This paper proposes an optimized approach that
calculates enabled transitions on demand using a dynamic fireset,
avoiding the need for such a structure. Additionally, a set of direct
read/write (DRW) operations on encoded markings is proposed
to speed up state generation and reduce memory usage without
the need for decoding and re-encoding. Heuristic information
is incorporated into the Büchi automaton for counterexample
search to guide exploration toward accepted states. These strate-
gies improve existing methods for LTL model checking with
Petri nets. The optimization strategies are implemented in a tool
called EnPAC (Enhanced Petri-net Analyser and Checker) for
linear temporal logic and evaluated on MCC (Model Checking
Contest) benchmarks, demonstrating a significant improvement
over previous methods.

Index Terms—Petri nets, Model Checking, State explosion,
Encode, Heuristic, Linear Temporal Logic (LTL)

I. INTRODUCTION

Model checking is a highly automatic technology based
on a formalism, like Petri nets [1], for verifying finite-state
concurrent systems [2]. Actually, many important temporal
characteristics or functional requirements of concurrent sys-
tems are specified by linear temporal logics (LTLs) [3]. In
traditional LTL model checking, a formal system model is
synchronized by using the product construction with Büchi
automaton [3] representing all behaviors that violate an LTL
formula. Then, the existence of a run with infinitely many
occurrences of an accepting state in the product automaton
provides a counterexample for the LTL formula [4] with an
on-the-fly framework [5].

However, the state-explosion problem [6] is the main obsta-
cle to practical model checking, as the number of reachable
states is exponentially larger than the size of a system de-
scription via Petri nets. Even the complexity of LTL model
checking is exponential. So far, a lot of reduction techniques
can decrease the size of the state space. Also, many mature

This work is supported by National Key Research and Development
Program of China under Grant No.2022YFB4501700.

* Corresponding author

tools (e.g., LoLA [7]) of Petri net model checking implement
efficient state generation and exploration techniques. This
paper focuses on optimizing state generation and exploration
strategies in existing Petri nets model checking tools.

Since model checking is essentially an exhaustive explo-
ration technology on state space, state generation is the core
of the whole process. Traditional methods must calculate
and store all enabled transitions under each reachable state.
However, many enabled transitions may never occur under on-
the-fly exploration. Thus, computing all transitions and storing
all enabled transitions leads to a waste of time and memory.
Addressing this problem, LoLA designs a data structure [7] to
accelerate computing all enabled transitions T (m) by briefly
updating T (m′) when migrating from a state m′ to the next
state m. Although it can avoid computing all transitions by
such a static structure, it brings some memory cost. This paper
optimizes the calculation of enabled transitions under each
state. It is more efficient to calculate the enabled transitions
on demand. This paper proposes the first optimized strategy
of dynamically calculating the transition set, where only one
enabled transition is calculated when a successor state is
generated.

Most explicit-state Petri net model checking tools exploit
various encoding strategies in marking storage, saving large
memory costs. Then, when calculating the enabled transitions,
they require reading the number of tokens of particular places
in the encoded marking. To our knowledge, they should have
a decoding and encoding procedure when reading or writing
encoded markings as shown in, e.g., LoLA [8]. However,
frequent decoding and re-encoding based on an encoding
strategy can reduce tool efficiency. It is challenging to read
the number of tokens directly by reading and writing encoded
markings. This paper defines a reading and writing pattern
for each place and proposes a set of bitwise operations on
our new pattern and the encoded markings. Thus, this paper
proposes the second optimized strategy of direct read/write
(DRW) operations.

State exploration (counterexample search) is another core
for explicit LTL model checking. Actually, the faster the coun-
terexample is found, the fewer states are generated with an
on-the-fly framework. Thus, it is better to reach an acceptable

1

state faster than random exploration. Based on this insight, this
paper presents the third optimized strategy to add a heuristic
to the Büchi automaton. The heuristic can guide the on-the-fly
exploration in the direction of accepted states.

Based on the above optimization insights, we implement
an explicit-state model checking tool EnPAC, standing for
Enhanced Petri-net Analyser and Checker. It can be used
for large concurrent systems, modeled as Petri nets [9] or
Colored Petri Nets (CPNs) as its colored extension [10]. It
can evaluate arbitrary queries specified in linear temporal
logic. Then, we evaluate the performance on the benchmarks
in Model Checking Contest (MCC) [11]. These optimized
state generation and exploration strategies help EnPAC make
excellent progress and drastic improvement on the benchmarks
of MCC [11].

The contributions are summarized as follows.
1. This paper proposes a dynamic fireset to calculate the

enabled transitions on demand. Not only can it avoid tra-
ditional complete enabled transition calculation, but it also
doesn’t require additional data structures like LoLA, one of
the state-of-the-art Petri net model checking tools.

2. This paper proposes a new reading and writing pattern
for each place on each encoded marking by a set of bitwise
operations, called DRW operations, without frequent decoding
and encoding on the encoded marking storage.

3. A heuristic Büchi automaton is presented to guide the
exploration for searching a counterexample faster, which helps
avoid traditional random exploration.

The preliminaries are introduced in Section II and detail the
proposed optimizations in Section III. Our experiment results
are evaluated based on EnPAC in Section IV. Finally, this
paper is concluded in Section V.

II. PRELIMINARY

A. Petri Nets

Petri nets have been widely used in modeling and verifying
concurrent systems for many interesting properties, such as
deadlock, liveness, and reachability. The definition of Petri
net is introduced.

Definition 1: A Petri net N is a five-tuple N =
{P, T, F,W,m0} where P is a finite set of places, T is a finite
set of transitions (disjoint to P), F ⊆ (P × T) ∪ (T × P) is
a finite set of arcs, W : (P × T) ∪ (T × P) → N is a weight
function where (x, y) /∈ F ⇐⇒ W (x, y) = 0, and m0 is the
initial marking. A marking is a mapping m : P → N.

Definition 2: A transition t is enabled under a marking m
if ∀p ∈ P , W (p, t) ≤ m(p). The set of all enabled transitions
in m is called fireset, denoted by T (m). Firing an enabled
transition t under a marking m leads to a new marking m′

where m′ (p) = m (p)−W (p, t)+W (t, p). This firing relation
is denoted as m t−→ m′. If there exists a transition sequence
ω = t1t2 · · · tn such that m1

t1−→ m2
t2−→ · · · tn−→ mn, mn is

reachable from m1, written m1
∗−→ mn. The state space of a

Petri net consists of R (m0) = {m | m0
∗−→ m}.

B. Linear Temporal Logic

We define the syntax and semantics of atomic proposition
based on MCC [11], and then LTL.

Definition 3: Let ⟨atomic⟩ be an atomic proposition, and
⟨int-expression⟩ be an expression evaluated by an integer.

⟨atomic⟩ := is-fireable(t1, · · · , tn)
|⟨int-expression⟩
≤ ⟨int-expression⟩

⟨int-expression⟩ := Int|tokens-count(p1, · · · , pn)

is-fireable (t1, · · · , tn) holds if either t1 or t2 or · · · or tn
are enabled, and tokens-count(p1, · · · , pn) returns the exact
number of tokens contained in the place set {p1, · · · , pn}.

Definition 4: Every atomic proposition is an LTL formula.
If φ and ψ are LTL formulae, so are ¬φ, (φ ∨ ψ), (φ ∧ ψ),
Xφ, Fφ, Gφ, (φUψ), (φRψ). Let AP be a non-empty finite
set of atomic propositions, ξ = x0x1x2 · · · be a sequence over
alphabet 2AP , φ and ψ be LTL formulae. ξi is the suffix of
ξ starting at xi. ξ satisfies an LTL formula according to the
following inductive scheme: ξ |= p ⇐⇒ p ∈ x0, p ∈ AP ;
ξ |= ¬φ ⇐⇒ ξ dissatisfy φ; ξ |= φ ∨ ψ ⇐⇒ ξ |=
φ or |= ψ; ξ |= Xφ ⇐⇒ ξ1 |= φ; ξ |= φUψ ⇐⇒ i ≥
0, ξi |= ψ ∧ (∀j < i, ξi |= φ); Other operators (∧, R, F,G)
can be derived from the above operators: φ∧ψ ≡ ¬(¬φ∨¬ψ);
φRψ ≡ ¬(¬φU¬ψ); Fφ ≡ (TRUE)Uφ; Gφ ≡ ¬(F¬φ)

C. On-the-fly Exploration of LTL Model Checking

Fig. 1: The entire process of explicit-state LTL model checking

As shown in Fig. 1, explicit-state LTL model-check tools
for Petri nets calculate the reachability graph of a Petri net,
transform the negative LTL formula into the Büchi automaton,
and then generate the product automaton in the form of Carte-
sian product of reachability graph and Büchi automaton, and
finally searches counterexamples on the product automaton. If
a counterexample is explored, false is returned. Otherwise,
true is returned. More details are in [12].

This process usually uses an on-the-fly framework to opti-
mize the above process. On-the-fly exploration [5] consists of
constructing a reachability graph and product automaton while
checking for the counterexamples in the product automaton.
An advantage of on-the-fly exploration is that it can return a
result before the entire state space is constructed.

2

III. OPTIMIZATION STRATEGIES

Since explicit model checking is a state exploration tech-
nology, the efficiency of state generation and exploration
(counterexample search) directly affects its performance. Two
optimizations can make state generation much faster with
less memory consumption. One is dynamic calculating en-
abled transitions. The other is direct reading and writing
encoded markings without frequent decoding and re-encoding
procedures. Concerning state exploration, a heuristic Büchi
automaton as an optimization can guide on-the-fly exploration
to explore counterexamples in the direction of accepted states.

A. Dynamic Fireset

Enabled transitions play a fundamental role in the state
generation since they determine all successor states of a
reachable state. The common practice is generating all enabled
transitions simultaneously and firing one by one to enumerate
all possible successor states. Only one enabled transition is
generated at a time in a state. Then, when on-the-fly explo-
ration backtracks to an explored state, how to directly generate
the next enabled transition without repeated exploration is a
difficulty.

To solve this difficulty, a total order (≺, T) on the transition
set is defined to check which transition is enabled in turn in
that order. Also, an array is defined to store all the transitions
and use their index as their total order. In addition, each
explored state needs to record the last fired transition. In this
case, when on-the-fly exploration backtracks to an explored
state, it can check the transition just next to the last fired
transition by order (≺, T) to fire the next enabled transition.
Once an enabled transition t is found, on-the-fly exploration
stops to generate a successor state m by firing t and continues
a depth-first search on m. Our new method is named dynamic
fireset (abbreviated as DYN). Its advantage is that it saves
memory and time to calculate and store all enabled transitions
under each reachable state.

B. DRW Operation on Encoded Markings

··· ··· 64 63 ··· 32 31 ··· 0 bit sequence

int 0int 1··· underlying implementation
is integer array

Fig. 2: Underlying implementation of bit sequence

Our encoding strategy is designed on an integer array, as
shown in Fig. 2, which is an underlying implementation of a
bit sequence. Based on it, this paper proposes a new method of
DRW operation on the encoded marking, which can be divided
into two sub-tasks. One is to locate, i.e., in which integer the
place’s coding resides and from which bit of that integer it
begins. The other is to read/write its value. Each place’s start
position is recorded in the bit sequence and length to locate the
correct position. A reading and writing pattern for each place
is defined to read or write a correct value. Then, the token

Fig. 3: Büchi automaton with heuristic information

counts can be easily read or written by a series of bitwise
operations using these patterns.

There are four kinds of marking encoding in APPENDICES
A-A of [13]. NUPN [14] encoding is used to illustrate our
DRW operations. Each place carries two extra attributes,
myunit, and myoffset, indicating the unit in which it
is located and the offset number in the unit, respectively.
Each unit carries two attributes, too, startpos and unitlen,
indicating the start position in the bit sequence and how many
bits this unit takes. When reading or writing a place, there are
two cases. In other words, the encoding of the unit occupies
only one integer or spans two integers. The algorithms for the
two cases are detailed in APPENDICES A of [13].

C. Heuristic Büchi Automaton

Before state exploration, the Büchi automaton is automati-
cally generated, which has complete information. This paper
proposes the heuristic in Büchi automaton in two aspects.
Firstly, searching counterexamples in a product automaton is
to find a strongly connected component containing accepted
states. Whether a product state (mi, bi) is accepted is deter-
mined by its Büchi state part bi. When generating a reachable
state and seeking a Büchi state to combine, it should choose
the state that reaches an accepting state the fastest. Thus,
the distance to an accepting state is the first aspect. As for
each state in the Büchi automaton, the number of atomic
propositions affects how easy to synthesize this state.

Based on these insights, this paper adds two extra attributes
Di and Ti, as the heuristics in each Büchi state. Concretely, Di

is the length of the shortest path from state Bi to an acceptable
state. Take Fig. 3 as an example, D0 in B0 is 2 because its
shortest path to an accepted state is B0 → B1 → B4 (or B0 →
B3 → B4) whose length is 2. And Di can be computed by
Dijkstra’s algorithm. Let APi be the set of atomic propositions
carried by Büchi state Bi, and Ti |APi|∗0.1 (Ti is the number
of atomic propositions carried by Bi. The coefficient ’0.1’ is
from our experience on MCC Benchmark). Ti indicates how
tough it is for state Bi to produce a reachable state into a
product state.

In our heuristic Büchi automaton (abbreviated as HBA),
when choosing a Büchi state for the product with a reachable

3

NoteNoteformula
(.xml)

NoteNotePetri net
model
(.pnml)

Syntax tree of formula

Rewrite

Pre-evaluation
Permanent true/false

atom propositions

Negation form

Simplify Simplified formula

Petri net model

P-invariants P/T place invariants

Bound

Encoding
strategy Encoding information

Encoding information

Büchi automata

Simplify

Convert Convert to SBA (State-
based Büchi Automata)

Simplified automata

compute
heuristic info Heuristc Büchi automata

LTL2BA

Parser
(tinyxml)

Reachability graph

Reachable
state generator

Fireable
transition

Caculate a fireable
transition

Reachability graph

Product automata

Product state generator Product automata

Counterexample search Model checking result

NoteNotePetri net
model

(.dot, .png)

NoteNoteBüchi
automata
(.dot, .png)

NoteNoteresult
(.txt)

Fig. 4: The architecture of EnPAC

state, this paper prioritizes the state with smaller Di + Ti. It
means we always prefer the path that can reach an accepted
state fast and be smooth enough.

IV. EXPERIMENTAL EVALUATION

A. Installation and Usage

We implement our optimizations in EnPAC (Enhanced Petri-
net Analyser and Checker). It is divided into five modules,
including the Petri net model, Reachability graph, Syntax tree
of LTL formula, Büchi automaton, and Product automaton.
The architecture of EnPAC is shown in Fig. 4, detailed in
APPENDICES A of [13].

EnPAC can be downloaded from https://github.com/
Tj-Cong/EnPAC 2021 and installed easily. The GitHub home-
page presents a user manual that describes the installation
procedure, file formats, output, and options. EnPAC can be
utilized on the command line of the Linux terminal. The results
can be displayed on the screen or in a file.

B. Benchmarks and Methodology

For evaluating the optimization strategies via EnPAC, we
use the benchmarks provided by MCC [11]. The benchmarks
consist of 1016 Petri net instances, as well as 32 LTL formulae
per instance (32512 LTL formulae).

In the benchmarks, there are 3672 LTL formulae that no
tool could give a result in MCC’2020 [15]. EnPAC has not
yet implemented dynamic fireset (abbreviated as DYN), direct
read/write operation (abbreviated as DRW), and heuristic

Büchi automaton (abbreviated as HBA) for MCC’2020 [15].
Thus, we compare our three optimizations with the results in
MCC’2020 [15] to ensure that the results are persuasive. We
call the version without the implementation of our optimiza-
tions the original method (abbreviated as ORI).

C. Experimental Analysis
For verifying each formula, there is a time limit of 300 sec-

onds and a memory limit of 16GB. We use each optimization
individually to illustrate their performances. The experimental
results are shown in APPENDICES B of [13].

1) Experiments for Dynamic Fireset: In order to show the
effect of DYN clearly, each formula’s time and memory peak
is recorded. TABLE III of [13] shows the comparison results
between the dynamic fireset method (DYN) and the original
method (ORI) on 8 Petri nets instances (their names are in the
first column). Two LTL formulae are verified for each instance
in the second column. Concretely, TORI and TDYN are the
whole time of ORI and DYN, respectively. And MORI and
MDYN are the memory peak of ORI and DYN, respectively.
To quantify the optimized performance for DYN, we calculate
∇T1 by TORI/TDYN , and ∇M1 by MORI/MDYN in TABLE
III of [13]. The average of each result is shown in the last
row. All results come to the same conclusion that our DYN
outperforms ORI on time and memory consumption.

It can be found from the experimental results that our
DYN method is slightly faster than the ORI method in most
instances. In particular, an LTL formula of ’CircadianClock-
PT-001000’ is originally timed out, but our optimization of

4

DYN can output the result within 130s. Except for this result
of a timeout, DYN has an average improvement on time of
3.41 times. Moreover, because DYN does not need to store all
enabled transitions in every reachable state, it uses much less
memory consumption than ORI.

2) Experiments for DRW Operations: Due to different
DRW operations for our encoding strategies as explained in
APPENDICES A-A of [13], we conduct separate experiments
on 1-safe encoding (8 instances), NUPN encoding (10 in-
stances), and P-invariant encoding (5 instances) in the first
column. For each instance in the second column, two LTL
formulae are also in the third column. TORI and TDRW are
the whole time of ORI and DRW, respectively. And MORI and
MDRW are the memory peak of ORI and DRW, respectively.
To quantify the optimized performance for DRW, we calculate
∇T2 by TORI/TDRW and ∇M2 by MORI/MDRW in TABLE
IV of [13]. The average of each result is shown in the last row.

It can be found that DRW is much faster than ORI on
time. For 1-safe encoding, DRW outperforms ORI by more
than 20 times in 9 formulae. Especially for NUPN encoding,
DRW outperforms ORI in all formulae on time. In P-invariant
encoding, DRW outperforms ORI by more than 200 times in
4 formulae. And DRW has an average improvement of 245.52
times than ORI. However, our DRW method uses slightly more
memory because it requires additional space overhead for the
read/write patterns of each place. But such costs are minuscule
since the average of ∇M2 is mostly close to 1.

3) Experiments for Heuristic Büchi Automaton: In addition
to time and memory, we add a comparison of the reachable
states that need to be generated to find counterexamples. It can
reflect whether the heuristic Büchi automaton can guide on-
the-fly exploration to find the counterexample faster. TABLE
V of [13] shows the experimental results on 10 instances in
the first column with two verified LTL formulae in the second
column. Concretely, NORI and NHBA are the state counts,
TORI and THBA are the whole time, and MORI and MHBA

are the memory peak of ORI and HBA, respectively. We also
calculate ∇N by NORI/THBA, ∇T3 by TORI/THBA, and
∇M3 by MORI/MHBA.

In TABLE V of [13], there are 4 formulae that are originally
timed out. And HBA outputs the results successfully with
few states. Obviously, our heuristic Büchi automaton helps
find counterexamples faster. Due to generating fewer states,
they also consume less memory. The average of ∇T3 is
6.4. Although the heuristic information does not lead well to
finding the counterexample for many other formulae, it does
not produce excessive time and memory costs. Most of ∇M3

are 1.00.
4) Discussion: We sketch four scatter plots in Fig. 5

on the benchmarks of MCC [11]. The x-axis denotes the
time/memory of DRW, DYN, and HBA, while the y-axis
denotes the time/memory of ORI. In the scatter plot, each dot
represents an LTL formula verification, and the dots above the
diagonal lines are the winning cases of our optimization.

In Fig. 5(a) and (b), the time and memory of DRW are
demonstrated on all encoding methods, where ’P-invariant’

represents P-invariant encoding, ’NUPN’ represents NUPN
encoding, and ’1-safe’ represents 1-safe encoding. We can see
that DRW can significantly reduce time on most LTL formulae.
And the scores for DRW are the formula counts that ORI
cannot output the result within 300s (although they have less
memory in Fig. 5(b)). It can be found that DRW can output
the results within 150s.

In Fig. 5(c) and (d), the scores for DYN and HBA are
also the formula counts that ORI cannot output the result
within 300s. Obviously, HBA works extremely well on some
formulae, as we can see that some orange triangles and circles
are much higher above the diagonal lines. Most orange dots
are distributed near the diagonal lines. It confirms HBA does
not produce large excessive costs in time and memory. HBA
can also be counterproductive on individual formulae because
it does not lead to counterexamples. Although most blue dots
are distributed near the diagonal lines in Fig. 5(c), DYN is
much more effective in optimizing memory based on Fig. 5(d).

There are 3, 672 formulae that no tool can output the results
in MCC’2020 [15]. After using three optimization strategies,
EnPAC can give results for 432 unknown formulae. Under
the complete benchmarks in MCC’2020 [15], there are 28781
LTL formulae that EnPAC has given the correct result before.
With three optimizations, EnPAC correctly gives the results
for 31735 LTL formulae on the same benchmarks. Thus, our
optimization strategies can improve EnPAC by nearly 3, 000
scores, which shows a drastic improvement in EnPAC.

V. CONCLUSION

A dynamic fireset (DYN) is proposed to save the storage
and time of computing some redundant enabled transitions.
Direct read/write (DRW) operations on encoded markings are
proposed to save the large overhead of decoding and re-coding.
In terms of state exploration, the heuristic information to the
Büchi automaton (HBA) can guide the search of counterexam-
ples, which speeds up the exploration. We implement a Petri
nets tool called EnPAC for verifying LTL and then evaluate it
on the benchmarks of MCC.

In the future, we improve the performance of EnPAC with
parallel algorithms and more heuristics on the reachability
graph or Büchi automaton.

REFERENCES

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] K. Wolf, How Petri Net Theory Serves Petri Net Model Checking: A
Survey. Transactions on Petri Nets and Other Models of Concurrency
XIV, 2019.

[3] P. Gastin and D. Oddoux, “Fast ltl to büchi automata translation,” in
International Conference on Computer Aided Verification. Springer,
2001, pp. 53–65.

[4] M. Y. Vardi, An automata-theoretic approach to linear temporal logic.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 238–266.
[Online]. Available: https://doi.org/10.1007/3-540-60915-6 6

[5] J. Geldenhuys and A. Valmari, “More efficient on-the-fly ltl verification
with tarjan’s algorithm,” Theoretical Computer Science, vol. 345, no. 1,
pp. 60–82, 2005.

[6] A. Valmari, “A stubborn attack on state explosion,” Formal Methods in
System Design, vol. 1, no. 4, pp. 297–322, 1992.

5

(a) DRW vs. ORI on time (b) DRW vs. ORI on memory

(c) DYN/HBA vs. ORI on time (d) DYN/HBA vs. ORI on memory

Fig. 5: Comparison of original method and our optimization strategies

[7] T. Liebke and C. Rosenke, “Faster enabledness-updates for the reacha-
bility graph computation.” in PNSE@ Petri Nets, 2020, pp. 108–117.

[8] K. Wolf, “Petri net model checking with lola 2,” in International
Conference on Applications and Theory of Petri Nets and Concurrency.
Springer, 2018, pp. 351–362.

[9] W. Reisig, Petri nets: an introduction. Springer Science & Business
Media, 2012, vol. 4.

[10] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Volume 1. Springer Science & Business Media, 2013.

[11] F. Kordon, “Model checking contest,” https://mcc.lip6.fr/.
[12] C. He and Z. Ding, “More efficient on-the-fly verification methods

of colored petri nets,” COMPUTING AND INFORMATICS, vol. 40,
no. 1, p. 195–215, Aug. 2021. [Online]. Available: https://www.cai.sk/
ojs/index.php/cai/article/view/2021 1 195

[13] Z. Ding, C. He, and S. Li, “Enpac: Petri net model checking for linear
temporal logic,” 2023. [Online]. Available: https://doi.org/10.48550/
arXiv.2307.12324

[14] H. Garavel, “Nested-unit petri nets: A structural means to increase
efficiency and scalability of verification on elementary nets,” in In-
ternational Conference on Applications and Theory of Petri Nets and
Concurrency. Springer, 2015, pp. 179–199.

[15] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, E. Amparore,
B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, G. Ciardo, S. Dal
Zilio, P. Jensen, C. He, D. Le Botlan, S. Li, A. Miner, J. Srba, and
. Thierry-Mieg, “Complete Results for the 2020 Edition of the Model
Checking Contest,” http://mcc.lip6.fr/2020/results.php, 2020.

6

