
EasyChair Preprint
№ 7848

Machine Trainable Software Models Towards a
Cognitive Thinking AI with the Natural
Language Processing Platform NLX

Felix Schaller

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 27, 2022



cba

Felix Schaller (Hrsg.): Modellierung 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 1

Machine trainable software models towards a cognitive
thinking AI with the natural language processing platform
NLX

Felix Schaller1

Abstract: Since the last decade, machine learning, especially with artificial neural networks, has
triggered a new quantum leap in computer science. Despite the considerable achievements, these
applications still lack a general purpose approach for artificial intelligence (AI). The main reason is
the absence of the ability for cognitive reflection or self-awareness. They are mainly highly specialized
trained patterns that can solve intricate problems but cannot describe themselves. I would like to
contrast this with a new method of trainable software models that shall be capable for self-awareness.
Implemented in the project Natural Language Platform NLX.With this project it shall be demonstrated
that self-aware AI is key for human-like cognitive tasks. The hypothesis claims that to reach this goal
machines require to describe its system context semantically by a formal model. Neuronal networks
are good at specific tasks, but the trained patterns cannot derive a reasoning for the trained solution
only that it satisfies its intended functionality but not why. Creating formal model instead of patterns
has turned out, that the formal nature of natural language is the best to reach that goal of a self-aware
AI. Certainly there are other AI’s that do natural language processing with neuronal networks. But
most of the models try to resolve the content with too rigid constraints and with little attention to the
context. For this project context plays a key role to resolve the meaning of natural language. If the
context is resolved correct it can be used for general purpose tasks resolving anything imaginable.
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1 Machine learning today

The last decade can be seen as the great breakthrough in artificial intelligence, where finally
by the leading role of neuronal networks, computation solutions could be achieved which
where not possible before by using primarily formal methods and algorithms. Meanwhile
almost all groundbreaking improvements by AI go on the account of neuronal networks.
They perform superior especially in domains where there are no formal solutions possible,
because no formal rules are available. Such domain is in particular the computer vision
domain where patterns play a major role. But also for other domains like natural language
processing, neuronal networks meanwhile play a key role to solve these tasks. In the last
few years the project openAI [Op21] with their newest language model GPT-3 [FC20] has
achieved astonishing results, where this AI can even create introcate softwarecode from
natural language [Za21] that is even executable. Also in other domains of natural language
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processing GPT-3 in conjunction with neural theorem prover has achieved astonishing
results by solving some math Olympics problems [Po22]. But yet when summarizing all
these success stories the impression prevails, that these solutions can be good at a specific
domain, but yet still require a human guided setup or operation frame to master the task. In
other words it needs to be specialized for the domain to perform. Meaning that it would not
be capable to develop the solution by it’s own neither to reflect it’s result. Something you
would expect by a general purpose tool. So it can be confidently stated it is yet a stupid -
indeed a very efficient stupid - machine.

2 The nature of neuronal networks

What makes us confident in that claim? the reason lies in the nature of neuronal networks
itself. Though if stacked together in huge Networks they can even easily surpass a human on
that specific domain, but still they can only perform tasks for what they are designed for. It
can be anyway seen as a general purpose tool from that perspective, that the problem posed
on can be general purpose indeed. But yet it processes only task for which it is specifically
tailored for and not any task by one single interface. The reason is this networks does the
task, but it does not know why. It doesn’t even know if the result produced is correct except
that it satisfies an intended cross reference. But here lies the rub, that to develop unique
solutions the AI requires a formal reason.

Neuronal networks are not capable by nature for that task because they currently supersede
on problems nobody knows a formal solution for, so you unleash a neuronal network on it
to intuitively find a solution with heuristic methods, like humans develop a gut feeling for
a certain domain by experience a network achieves positive success rate over time. After
achieving a finite amount of training the network became confident in estimating the result.
But no matter how precise the network performs, it’s yet an estimation - indeed a highly
sophisticated estimation - of the solution. This solution is anyway just a product of the
training set posed to the network and in an unluckily constellation in the selection of training
material during training, the network later may show unintended behavior leading to false
positives [FS10]. One reason are unknown patterns on a sublimal level or patterns that
seem not obviously relevant by human interpretation being mixed in the training data which
influences the final result. Another example are adversarial attacks by noise. By nature a
neuronal network is not so resistant against such type of signal jamming [NKP19]. Here the
major reason is, that the network is applied to the raw data finding patterns on the atomic
level. Would the signal instead be transposed by Fourier Transformation, a noise jamming
could be isolated easily [ECK19].
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2.1 Functional safety

Based on the fact, that no matter how sophisticated the network is, it is at the end still a
highly sophisticated guessing, achieved through training experience by no formal rule. That
makes it to the ultimate tool for unresolved problems but on the other hand makes those
networks actually insufficient for functional safety domains [GB19]. Currently there are
several safety standards under development which discuss criteria and evaluation methods
under which circumstances they are acceptable [Ts20] [et20]

2.2 The solution is encrypted in the matrix

The final Problem then is, that the trained solution is finally hidden in some patterns of
the various matrices inside the network, which does by no way unveil its reasoning for the
solution. Ironically by the reason that the network was the mean of choice because there
was no formal method available. In this problematic there lies a huge potential towards a
paradigm shift about the meaning of formal methods and machine learning. This paper also
addresses the current paradigm of formal truth in later chapters.

2.3 Natural language processing and neuronal networks

As natural language has yet been seen as too ambiguous for formal methods the solution
lays near to use that available tool that can handle problems with unknown formal rules.
And as the success story of the GPT-3 model reveals, it does this job pretty well and precise
although language is seen as something too ambiguous for deterministic tasks like creating
software code. The reason is, that the hypothesis of the ambiguous nature of language is
actually not true. It is only true if you look on literal terms as formal expressions. And that’s
why solving natural language was yet prevailed to the domain of neuronal networks. But
Language has indeed a very formal nature and can be very powerful if you look at natural
language from a different point of view. This matter will be very essential for the topic of
this paper and will be dedicated in particular in a later chapter.

3 The formal method and machine learning

As shown in the chapters before it is obvious that machine learning methods in particular
with neuronal networks computation has penetrated into areas which were not available
before with formal methods. But as shown yet it does not provide a reasoning, at least and
most for itself to build formal conclusions from it. The simple reason is that to know what I
am dealing with i require to describe it semantically furthermore this semantics requires a
context. The context becomes key in that matter, but more of it later...
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3.1 Structural science and the Hilbert program

When looking today on the domains of math and information science it is all about reasoning.
In particular universal validity of claims and their proof. This was believed till Alan Touring
introduced its Touring Machine as answer to David Hilbert’s Program for an axiomatic proof
theory [Pl14]. Touring demonstrated with this machine theory, that there is no ultimate
law, that a task can be solved. This paradigm thus defines the fundament of all information
theory, but it is only half true. It is only true when applied in the frame and to problems of
the David Hilbert Program. And the problems stated there are the backbone of all formal
problems in information technology till today. Basically what all axiomatic theorems do,
is to set up a claim that pretend to have an ultimate validity and the algorithm has to be
just sophisticated enough to handle that problem. If it does not handle it it means it has
bugs and have to be fixed. But the other truth is, that the constructed reality of the designer
of the axiom has put his imagination of reality into that formal rule. With the result, that
designer figures out that not the algorithm is wrong but his imagination of the constructed
reality does. Thus becoming a software developer is becoming humble about the validity of
constructed realities. But that’s not the point here, but shows an interesting side effect when
developing algorithms and theorems. The real point for all formal problems is that they fail

1. because they claim to have ultimate validity. All constructed models that reflect a
certain aspect of a real problem are true only in a certain area. No model can claim
from itself being valid for all circumstances.

2. if a Touring Machine fails because it does not return from its pushdown state it means
the problem is underspecified and lacks constraints it requires to solve the posed
problem.

3. because of the self-entitlement of ultimate validity of axiomatic theorems they claim
to work context free.

4. due the negligence of meta structures in the data those axioms are applied on raw and
unstructured data on an atomic level. Thus lacking a structured semantic of the data
any formal method will fail.

3.2 The key role of context

Soon or later everyone will come to the point where the limits of an axiomatic theorem
or formal claim are shown up. Try to qualify a software for a functional safety domain.
Here it is mandatory to draw a line around finite tasks, named use case, of within they can
be declared as safe after undergoing a certain process of validation. Any contemporary
program is designed to work in any context and the degree of freedom in that program is
reduced to that amount of state to work safe under under any circumstance. Try to develop a
Grammar for a domain specific language that can be unleashed on any text to resolve the
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document structure from it in a document object model. It will work on formal languages,
that’s what they where designed for, but there will be no ultimate valid grammar to solve the
content without a certain knowledge of the context of the text. Or try to automate tasks like
continuous integration it requires always someone who sets it up manually. Thus without
knowledge or consideration of the dealt context any theorem will fail.

3.3 Fractals and meta structures of reality

The reason why formal methods fail is because the reality has a self similar nature. Not that
it is just self similar, those self similar features build upon meta structures which build the
ground truth and are the backbone of any cybernetic system. Gregory Bateson a pioneer
in cybernetics and systems theory shaped the term of "meta structuresïn his book Mind
and Nature [Ba79]. He sees those structures as immanent and as a implicit consequence
of growing complexity in systems. This means for a practical application, that without a
proper knowledge of the context you are unable to distinguish self similar features from
each other on an atomic level. Many different problems are the same and thus cannot be
distinguished, which leads to an ambiguous situation how to categorize the data features.
Unfortunately most applications work solely on the atomic level. Simple experiments with
the human perception can be made to understand the need to create meta structures of the
given data and relate them to the given context. Thus it seems obvious that for a proper

Fig. 1: (left) a closeup view on the raster does not reveal the motive, while on the right picture the
motive can be clearly percepted

interpretation of posed problems it will be essential to develop a structured semantic for
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them that they can be formally resolved. Otherwise the problem gets stuck in ambiguity. So
the next question arises here: how to build up meta structures on data to derive a context so
it can be processed with formal methods.

4 Towards formal models in AI

Carrying on with the success story of neuronal networks from above I mentioned the
circumstance that they penetrate in areas where there is no formal rule known by applying
heuristic methods of intense training. By training the neuronal network derives hidden meta
structures of the trained content and stores it in its patterns of several hidden layers. But
those meta structures do not own a semantic. So they can not explain what they are doing
and develop reasoning for that. Thus it requires to develop a semantic to interpret those
meta structures.

4.1 Introducing Software Models to reduce complexity

Even when working with software models which pretend to reduce complexity, like models
from the SysML and UML domain they can help to sustain an overview for the user and
if done by experienced System Engineers they can speed up the development process and
can in some cases even generate software code. But as the modeling languages UML or
SysML want to reserve the flexibility to describe systems, users can create huge mess.
Many modeling automation projects in the industry, starting with great ambitions aiming to
automate the development process and to leverage systems and software development to the
next level not seldom died an inglorious death. Some of them are still riding a dead horse
because the companies already poured millions of their budged into the project fearing all
that investment to be lost if they redesign their concept from the bottom up, so they insisted
to carry on and exacerbate. I have consulted some of them and was not reluctant to provide
them with an honest analysis of the tricky situation. The main reason in those projects were
that there was no proper Modeling semantic given that maintained a certain methodology
hygiene. Especially because in many modeling tools available on the market there is neither
type checking nor other methodology checking automatism implemented with the final
result that they are useless for post-processing in downstream system domains and can finally
only serve as a form of a documentation of the process. This circumstance arises the need
for a proper modeling theory. For that purpose the FOCUS theory of distributed systems by
Broy et.al. was developed [BS01] This modeling theory is currently implemented in the
SPES modeling framework which is constantly being developed further in various research
project and industrial applications [Bö16]. Having a proper concept of various viewpoints
and the concept of granularity levels, the framework does a good job in improving the
Quality of model based systems. Meanwhile it has been widely established in the industry
and added with a proper tooling it has the potential becoming the new standard in systems
engineering.
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Fig. 2: Exchanging data artifacts across system domains require intense manual administration

4.2 Getting the developers knowledge into the model

As shown in the last chapter that a proper methodology accompanied with a powerful
framework is key for a good success story in model based software engineering, and if
such a proper methodology is properly implemented it can avoid nightmares in systems
engineering. But although the model based approach improved the development in software
and systems those models still requires the interpretation of the developer because those
models do not own its own semantics. To the computer all software models are simply a
finite collection of nodes and edges - nothing more. Yet that is nothing that could live up
with the fancy claim of a cognitive thinking AI as promised in the title, but we are not there
yet. This is the case simply due to the lack of knowledge for the machine - and that remains
with all data artifacts in information technology. They create meaning for the developer
or expert but not to the machine, simply because they hold no meta information for the
machine about what they are and how they have to be treated. First and most, literals that are
used by the developer to identify and classify model elements give meaning to the developer
to understand what it is about, but the machine lacks an interpretation of the literals to
create its own semantic.

4.3 Introduction of Meta Information

A first step would be to implement a semantic by introduce meta information as an overlaying
layer that tells the machine how to handle model elements. this meta information introduce
a classification system with a proper taxonomy to describe a model element lets say we
have a model element that shall represent a specific tool e.g. a GCC compiler then we
assign a class hierarchy which derives that specific compiler tool from a generic compiler
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up to higher super classes tool, executable etc. further it is known that that tools has certain
interfaces. Now when we assign that class to a tool in a tool chain the modeling tool knows
what kind of data that tool can interchange with other tools. If we now want to define a
artifact flow from one tool to another, the modeling tool already can do some automatic
assignment because by the typing of the tools it can derive constraints of what kind of data
can be interchanged between those tools. and the modeler does no longer need to explicitly
assign the data connections by himself but the software already knows what connections are
possible and can connects them by themselves. Here at that stage it would be already a semi
automatic and proactive tool. Such proactive actions can be a Help, but not seldom they can
also be very annoying.

4.4 Interactive modeling and machine trained models

Many professional computer users who where already using Microsoft computers around
1995 are very likely to have come in touch with Microsoft®Word™back then. At that time
Word had an digital assistant who tried to guess the users current actions. So if you were
typing a postal address the digital assistant appeared from nowhere saying “Ah obviously
you want to write a letter”. In some cases the guess would have been right. But honestly
in most cases this little lad was more than an annoying nightmare, because in most cases
the unordered and spontaneous interventions in form of an interactive assistant where
inappropriate for the current situation. The main reason was, that the solutions offered
where too stenciled that it could have been addressing real individual needs for the user.
This originated from the cause that you could not interact with that assistant like with a real
human person and respond: “sorry you misinterpreted, this is not going to become a letter
but an address list”. Then next time the assistant would have behave different. But because
it just imitated basic tasks based on a stencil this would have not lead to a real semantic to
source the specific needs of the user. The Clippy assistant from Microsoft®Word™had a
precessor: Microsoft®Bob that originated from an research project Seductive Interfaces by
Clifford Nass and Byron Reeves [Sk94]. Based on the research of what can improve Human
Computer interaction those stencils for the assistant are created. But human computer
interaction cannot satisfy stencils. It requires a real interactions with learning effect. So this
means that if the computer want to response to the need of the user they require a model
that can be trained. How such models can be trained? following approaches are possible:

• macro training by recording tasks in a guided way. so the computer learns by observing
user interactions with a GUI and then repeats it on similar problems. Through an
interactive approach in the case of conflicts the model can further improve to learn to
handle special cases

• Back projection of error. By reverse analyzing logged action the user gives feed-
back about what was made right and what wrong thereby proactive processes can
interactively adapt on the user’s need.
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Although this can improve the annoying behavior of proactive assistant this already opens
up an interface for supervised learning based on software models that can be trained.
the interface has much in common with declarative programming language but with
interactive additions to improve by failure. The interactive approach bypasses the problem
that programming implements the constructed worldview of the developer into the solution,
which is often incorrect, while an interactive approach is validated by reality itself. And last
but not least many conflicts arise by a different interpretation of a topic between different
parties. Through own studies with complex software tools like professional 3D programs i
made the experience that supervised training of models to speed up redundant workflows
works already on the level of GUI interaction but still comes on the cost of manual work
because pure interaction lack a fully scalable semantic [fr12]. To improve the training it
would require an interface which would enable the interaction via natural language

4.5 A theory about natural language and its origin

When discussing the topic of artificial intelligence the performance of an artificial intelligent
systems are usually tried to be benchmarked to human intelligence and how far this system
would be away from a real cognitive thinking and human-alike system. Yet many artificial
intelligent systems surpass humans on a certain discipline with ease but they could be
anyway compared rather to an animal stage. the main reason is not so much the power of
the artificial system itself but the ability to self reflect and analyze. Human consciousness is
superior to the animal not solely of the bigger brain but because they developed a tool of
cognitive perception of the environment and itself. This tool is called language. Only by the
tool providing semantic to a given context the cognitive achievement for the human kind
was possible. And this ability is the only thing that makes them superior to the animal.

So How could language have been evolved? Studies with primates and kids in the field
of cooperability showed that human children intuitively cooperate while primates rather
compete against each other. A primate knows that the stronger partner does not share the
reward with the other while kids instinctively shared the reward [HT06]. This arises the
thought that the success of the human race might lie in the ability to cooperate and form
enterprises to accomplish tasks to what a single individual would not be capable to. For
example hunt a mammoth or buffaloes. For such a venture it requires to synchronize the
strategy and to coordinate the tasks among the members of the venture. therefore a tool is
required to transfer the vision and strategy of the leader to all the members. In the same
context the cave paintings may also have been arised to support the verbal expressions.

4.6 language as a model

Talking about natural language processing in the previous chapters, the current practiced
approach is achieved by neuronal networks. Language expressions are yet widely understood
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as too ambiguous to formalize expressions and theorems. But this is only half true. Language
is a tool that can be very precise in expressing. Looking at language as formal commands
doesn’t work. Because language explicitly requires a context to work. By its declarative
nature, semantic in language is created by interaction with the other party. this is important
because

• terms in language are not of axiomatic nature and thus do not have a fixed meaning.
So the real semantic of a term is either constrained by the context or requires to be
negotiated with the other party till both parties reached an consensus.

• it has a fractal nature and that makes language a very efficient modeling tool where
it only requires detailed descriptions where it does not derive automatically by the
given context

• a further fractal feature of language is a proper taxonomy of the terms where terms
derive from a hierarchic taxonomy

This and more features of natural language makes it very efficient in the expression and
communication of intentions because many things can be implicitly derived from the context
and do not have to be explained in a redundant manner. Through its truly declarative nature,
language language has the ability to build formal models that can be used for cognitive
human like problems and tasks.

Fig. 3: Overview of the NLX tool. (top) text document, (bottom) interactive grammar trainer, (bottom
left) DOM-tree

5 The natural language project NLX

Based on the prior considerations about natural language processing in a truly formal
manner with machine trainable software models, the NLX project was set up. Currently
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aimed on the goal to provide a proof of concept for the hypothesis of natural language
based and machine trained models. Also to show that such models are capable to resolve
cognitive tasks and provide a argued reasoning for its conclusions. Something that is not
yet possible with alternative solutions available in the field of artificial intelligence. The
project is built up in Java with the Eclipse modeling framework and the help of Neo4j as a
spatial graph database to formalize the semantic structure and to resolve patterns with the
graphical querying language Cypher.

As a base platform it uses a DSL grammar to resolve natural language into a document
object model tree (DOM-tree). On top of this tree all kinds of generators can be adapted to
generate other XMI-Models from the structure, but also do natural language processing.
Currently the development of the natural language processing is in the state of developing a
grammar trainer which resolves the sentences in a grammar model where in the future an
interlinked ontology model and constraint proovers will be built on top. Those proovers
then would have the role to validate the created context of the statements and derive formal
processes from it like analysis tasks, process automation, code generation and many more

Fig. 4: Current development status of the project

5.1 grammar tree

Currently the project is in the state to finalize the grammar trainer. With this module it is
intended to train a model that is capable to resolve a sentence structure and separates the
parts of subject predicate and objects an further determine time and mode like passive,
active, conjunctive. the resolved sentence structure shall then be transferred into an ontology
model which defines the entities, the attributes and its functional relation to each other. this
document-internal ontology is then linked to other related ontologies outside the document
or with a database of ontologies acting as the background knowledge of the system. all this
is then fed into a kind of sayconstraint proover which does the validation of the statements
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on one hand and resolves the logic on the other hand. The grammar trainer already can
be seen as a first proof of concept of machine trainable models. It attempts to resolve the
sentence structure like finding an exit through a maze. if the entire sentence has found
one root and all branches cover the entire sentence the sentence is resolved. the resolved
sentence will then be transferred into the overall ontology of the document. The solution of
a trainable grammar is chosen by the reason, that constructed rules would be too unflexible
for the almost infinite variances of sentence structures, thus the structures shall be trained
with a training interface to improve the grammar model constantly. Currently the extension
of the training capabilities are ongoing and are estimated to be complete soon.
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